Decision-Theoretic Planning with Person Trajectory Prediction for Social Navigation
نویسندگان
چکیده
Robots navigating in a social way should reason about people intentions when acting. For instance, in applications like robot guidance or meeting with a person, the robot has to consider the goals of the people. Intentions are inherently non-observable, and thus we propose Partially Observable Markov Decision Processes (POMDPs) as a decisionmaking tool for these applications. One of the issues with POMDPs is that the prediction models are usually handcrafted. In this paper, we use machine learning techniques to build prediction models from observations. A novel technique is employed to discover points of interest (goals) in the environment, and a variant of Growing Hidden Markov Models (GHMMs) is used to learn the transition probabilities of the POMDP. The approach is applied to an autonomous telepresence robot.
منابع مشابه
GPS Jamming Detection in UAV Navigation Using Visual Odometry and HOD Trajectory Descriptor
Auto-navigating of unmanned aerial vehicles (UAV) in the outdoor environment is performed by using the Global positioning system (GPS) receiver. The power of the GPS signal on the earth surface is very low. This can affect the performance of GPS receivers in the environments contaminated with the other source of radio frequency interference (RFI). GPS jamming and spoofing are the most serious a...
متن کاملTrajectory Planning Using High Order Polynomials under Acceleration Constraint
The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...
متن کاملRisk based motion planning and navigation in uncertain dynamic environment
Navigation in large dynamic spaces has been often adressed using deterministic representations, fast updating and reactive avoidance strategies. However, probabilistic representations are much more informative and their use in mapping and prediction methods improves the quality of obtained results. The paper proposes a new concept to integrate a probabilist collision risk function linking plann...
متن کاملColored Decision Process Petri Nets: Modeling, Analysis and Stability
In this paper we introduce a new modeling paradigm for developing a decision process representation called the Colored Decision Process Petri Net (CDPPN). It extends the Colored Petri Net (CPN) theoretic approach including Markov decision processes. CPNs are used for process representation taking advantage of the formal semantic and the graphical display. A Markov decision process is utilized a...
متن کاملProbabilistic Autonomous Robot Navigation in Dynamic Environments with Human Motion Prediction
This paper considers the problem of autonomous robot navigation in dynamic and congested environments. The predictive navigation paradigm is proposed where probabilistic planning is integrated with obstacle avoidance along with future motion prediction of humans and/or other obstacles. Predictive navigation is performed in a global manner with the use of a hierarchical Partially Observable Mark...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015